Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns.
نویسندگان
چکیده
RNA is commonly believed to undergo a number of sequential folding steps before reaching its functional fold, i.e., the global minimum in the free energy landscape. However, there is accumulating evidence that several functional conformations are often in coexistence, corresponding to multiple (local) minima in the folding landscape. Here we use the 5'-exon-intron recognition duplex of a self-splicing ribozyme as a model system to study the influence of Mg(2+) and Ca(2+) on RNA tertiary structure formation. Bulk and single-molecule spectroscopy reveal that near-physiological M(2+) concentrations strongly promote interstrand association. Moreover, the presence of M(2+) leads to pronounced kinetic heterogeneity, suggesting the coexistence of multiple docked and undocked RNA conformations. Heterogeneity is found to decrease at saturating M(2+) concentrations. Using NMR, we locate specific Mg(2+) binding pockets and quantify their affinity toward Mg(2+). Mg(2+) pulse experiments show that M(2+) exchange occurs on the timescale of seconds. This unprecedented combination of NMR and single-molecule Förster resonance energy transfer demonstrates for the first time to our knowledge that a rugged free energy landscape coincides with incomplete occupation of specific M(2+) binding sites at near-physiological M(2+) concentrations. Unconventional kinetics in nucleic acid folding frequently encountered in single-molecule experiments are therefore likely to originate from a spectrum of conformations that differ in the occupation of M(2+) binding sites.
منابع مشابه
Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem–loop motif of a transcriptional terminator
Bacterial IIC introns are a newly recognized subclass of group II introns whose ribozyme properties have not been characterized in detail. IIC introns are typically located downstream of transcriptional terminator motifs (inverted repeat followed by T's) or other inverted repeats in bacterial genomes. Here we have characterized the self-splicing activity of a IIC intron, B.h.I1, from Bacillus h...
متن کاملDifferential GC content between exons and introns establishes distinct strategies of splice-site recognition.
During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group ret...
متن کاملKinetic analysis of the 5' splice junction hydrolysis of a group II intron promoted by domain 5.
The 5' splice junction (5'SJ) of Group II intron transcripts is subject to a specific hydrolysis reaction (SJH). This reaction occurs either within a single transcript containing intron sequences through domain 5 (D5) or by cooperation of two separate transcripts, one bearing the 5'SJ and another contributing D5 (1). In this report we describe the latter reaction in terms of its kinetic paramet...
متن کاملAnalysis of nonuniformity in intron phase distribution.
The distribution of different intron groups with respect to phases has been analyzed. It has been established that group II introns and nuclear introns have a minimum frequency of phase 2 introns. Since the phase of introns is an extremely conservative measure the observed minimum reflects evolutionary processes. A sample of all known, group I introns was too small to provide a valid characteri...
متن کاملA single-nucleotide exon found in Arabidopsis.
The presence of introns in gene-coding regions is one of the most mysterious evolutionary inventions in eukaryotic organisms. It has been proposed that, although sequences involved in intron recognition and splicing are mainly located in introns, exonic sequences also contribute to intron splicing. The smallest constitutively spliced exon known so far has 6 nucleotides, and the smallest alterna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 11 شماره
صفحات -
تاریخ انتشار 2015